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AFIT-ENY-13-M-37
Abstract

Flapping wing micro air vehicles (FWMAV) have been a growingfield in the research

of micro air vehicles, but little emphasis has been placed oncontrol theory. Research

is ongoing on how to power FWMAVs where mass is a major area of concern. However,

there is little research on the power requirements for the controllers to manipulate the wings

of a FWMAV.

A novel control theory, bi-harmonic amplitude and bias modulation (BABM), allows

two actuators to produce forces and moments in five of the FWMAV’s six degrees of

freedom (DOF). Several FWMAV prototypes were constructed and tested on a six-

component balance. Data was collected for varying control parameters and the generated

forces were measured. The results mapped control parameters to different degrees of

freedom. The force required to generate desirable motion and power required to generate

that motion was plotted and evaluated. These results can be used to generate a minimum

power controller in the future.

The results showed that BABM control required a 26% increasein power in order to

increase lift by 22%. The lift increase was accomplished by increasing the amplitude by

10% over the established baseline. The data also showed thatvarying some parameters

actually decreased the power requirements, allowing otherparameters to increase which in

turn would enable more complex maneuvers. For instance, an asymmetric change in split-

cycle shift of±0.25 decreased the power required by 14% and decreased the lift by 25%.

Changing the stroke bias to±0.75 had a negligible effect on power but decreased the lift

by 27%. Furthermore, the data identified certain parameter combinations which resulted in

other forces and moments. These results identified how BABM be used as a control theory

for the control of FWMAVs.
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POWER REQUIREMENTS FOR BI-HARMONIC AMPLITUDE AND BIAS

MODULATION CONTROL OF A FLAPPING WING MICRO AIR VEHICLE

I. Introduction

Recent years have seen an increase in use for unmanned aerial vehicles (UAVs). It

is becoming apparent that they are now a major mainstay in American warfare.

UAVs play a pivotal role in the intelligence, surveillance,and reconnaissance (ISR) mission

affording troops unrivaled capabilities. UAVs also supportedtroops by serving as local

weather sensors and communication relays. In that class falls the micro air vehicle (MAV).

A key role that often comes to mind is the MAV’s capability to fulfill the stealthy, persistent,

perch, and stare mission. This calls for a MAV capable of flying to difficult targets,

landing in a perched position, conducting surveillance, and returning to home base. [38]

Furthermore, the possible roles of MAVs are ever expanding with new potentials such as

the delivery of computer viruses without putting troops in harm’s way. Multiple ideas have

been investigated to generate a MAV to fulfill this mission toinclude fixed wing, rotary

wing, and flapping wing aircraft.

A bio-inspired MAV, one whose design is based on nature, would have the inherent

benefit of stealth through mimicry of insects. Such a MAV is referred to as a flapping

wing micro air vehicle (FWMAV). A FWMAV takes advantage of several unsteady

aerodynamic effects in the low Reynolds number regime. [3] A FWMAV could meet

mission requirements while being unobtrusive and pervasive.

1



1.1 Motivation

The Air Force Institute of Technology (AFIT) has dedicated much research to the

development of a bio-inspired FWMAVs. It was evident very early on that the miniscule

mass of the FWMAV was a major concern. As such, there is a desire to focus research

on reducing the power requirements of the FWMAV therefore reducing the mass of the

power supply. However, as of now, there is not a clear understanding of the current power

requirements of the FWMAV. AFIT has developed a control theory called bi-harmonic

amplitude and bias modulation (BABM) based on wing-beat shape modulation developed

by the Air Force Research Laboratory (AFRL). [5, 14, 15] Research is under way to identify

how the BABM scheme will be implemented to achieve mission worthiness. It is known

that through BABM, five parameters can control the FWMAV in 5 degrees of freedom

(DOF) but little is known about how much power is required to vary those five parameters.

[6] Without knowledge of the power requirements, control logic cannot be designed to

maneuver the FWMAV and minimize the mass of the power supply.This research focused

on characterizing those power requirements for the BABM control scheme.

1.2 Research Goals

As stated above, the goal of this research was to investigatethe power requirements of

AFIT’s current FWMAV using the BABM control scheme. Gathered data was processed

and will be provided to other researchers for use in trajectory and control optimization and

control optimization. With this data, the trajectories canbe optimized to require the least

amount of power and the control logic can be optimized to manipulate the five BABM

parameters to minimize the power needed.

Data was collected on a single-wing flapper at first. Trends were applied to the model,

and consistency among wings was verified. These practices removed any suspicion that

the manufacturing process provides a large amount of variation between test samples.
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The single-wing flapper also verified that the research approach is valid. After those

requirements were met on the single-wing flapper, testing began on a dual-wing flapper.

Testing was similar to that of the single-wing flapper but with expanded goals. The data

collected from the dual-wing flapper indicated variations between the left and right wing.

It also provided moment and force data more representative of an operational FWMAV.

Succinctly, the thesis statement for this research is:How much power is required to

vary each parameter and maintain lift? How do those power requirements relate to

controllability?

This work assumed that the results acquired will be representative of an operational

FWMAV. It was also assumed that the measured power results are valid for any given

set of electronics driving the actuator. There are some limitations to this research. To

accelerate the development time of the AFIT FWMAV, multipleareas of research are

being investigated simultaneously. As such, any findings from other research areas that

affect the design or production of the FWMAV will not be represented in this research.

It is important to state that the test methodology will remain the same for future testing

of different FWMAV designs. The results were expected to show that an increase in

any BABM control parameter would result in greater or equal power requirements. The

conclusions developed during this research will aid in the control logic development.

1.3 Organization of Thesis

The organization of this thesis is chronological and increasing in technical detail.

Chapter II discusses previous research in the area and lays the groundwork for this research.

Chapter III dives into the methodology used for data collection. Chapter IV presents the

processed data collected from testing and provides the basis for the conclusions. Chapter V

presents the conclusions drawn from the data and suggestions for future work.
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II. Background & Literature Review

The history of research into FWMAVs is extensive. One may say it began when the

military first started to investigate unmanned aircraft or it may have started when

man first began to study the flight of our winged friends in hopes of achieving flight.

The recent ramp in technology has brought UAVs into the forefront of military leadership.

For instance, UAVs flew over 100,000 total flight hours by September 2004 in support of

Operation ENDURING FREEDOM and Operation IRAQI FREEDOM. [37] An increased

focus on ISR missions to clandestine or denied entry locations has concentrated research

on biomimicry. [2] By studying our cohabitants, researchers have gained insight into small-

scale aerodynamics. Bio-inspired MAVs may one day offer unparalleled capability. As

such, a lot of previous research has been done on the development of FWMAVs.

AFIT researchers have found a niche to fulfill in the FWMAV community. The

research conducted at AFIT focuses on a FWMAV with a wingspanaround 10 centimeters

and a mass around 1.5 grams. Multiple researchers have focused on smaller or larger

FWMAVs. AFIT also developed the BABM control scheme and discrete harmonic plant

compensation (DHPC) to manipulate the wings of the FWMAV. A clear understanding of

what research has been done in all of the previous topics is required to place the research

conducted herein in context.

2.1 The Manduca sexta

The first step to any bio-inspired system is a thorough understanding of the creation

who serves as the inspiration. The FWMAV used for this research has been inspired by

theManduca sexta, or hawkmoth, shown in Figure 2.1. TheM. sextais a North American

moth with long forewings, short hind wings, and the ability to hover and move side-to-side.

[29] This extraordinary ability made theM. sextathe perfect candidate. [39] They are also
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easily reared in a laboratory, have short life cycles, and arelarge, all of which aide in many

scientific investigations. Due to these qualities, there is no shortage of literature on the

study ofM. sexta. The biological classification of theM. sextais found in Table 2.1.

Figure 2.1:Manduca sexta[23]

2.1.1 Mass.

The size of theM. sexta, like with most creatures, varies based on gender. Figure 2.2

shows average mass values obtained for theM. sextabased on 30 samples. The total mass

of theM. sextaaverages only 1.55±0.05 grams. [39] In order to create a FWMAV based

on theM. sexta, the FWMAV must be of similar mass. The limitations to the FWMAV

mass will be discussed later.
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Table 2.1:Manduca sextaClassification [35]

Kingdom Animalia

Phylum Arthopoda

Class Insecta

Order Lepidoptera

Family Sphingidae

Genus Manduca

Species Manduca sexta

2.1.2 Wings.

Much consideration was given to matching the FWMAV wing to the M. sextawing.

Insect exoskeletons are formed from a complex blend of polymer-based chains that make

up the body, limbs, and wings, which act as a barrier between the living tissues of the

insect and the environment. [22] Epidermal layers on the wing membrane are supported

by the venation. The veins act as structural members, carry nerves, and carry hemolymph

to the wings. Wing mass is dominated by the mass contributions of the venation (80%),

membrane (10%), and scales (10%). The wing is discussed in terms of span, chord, and

aspect ratio similar to fixed wings. The wingspan,R, is typically 45-55 millimeters. The

wing area,S is typically 715 mm2. The aspect ratio,A, of theM. sextais approximately

14.0-15.0. The mass of theM. sextaforewing averages approximately 34.6 mg. The area

centroid falls at roughly 37.3% of the wing length and at 59.5% of the maximum wing

chord. [39]

When discussing the wing properties of theM. sexta, one will find separate discussion

of the properties of the venation and the membrane informative. As stated above, the veins

act as the structural members of the wing. Analysis has shownthat the density of the
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Abdomen

0.72 g

Wings

0.09 g

Head

0.11 g

Thorax

0.58 g

Figure 2.2:Manduca sextaaverage mass distribution [39]

veins to be 2.4258 g/cm3 and the elastic modulus,E, approximately to be 7.41 gigapascals.

The membrane elastic modulus has been calculated to be approximately 2.446 gigapascals.

[39] In later sections, an examination will be made of prior efforts to match the physical

characteristics of the biological wing.

2.1.3 Locomotion.

The M. sextaprimarily uses two major muscles to produce the power required for

flapping: the dorsal longitudinal muscles (DLMs) and the dorsal ventral muscles (DVMs).
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These are common to the majority of flying insects and are located in the thorax. When the

DVMs contract, they pull the dorsal surface of the thorax downward and the wings rotate

upward. When the DLMs contract, they bow the dorsal surface upward and the wings

rotate downward. The constant contraction and relaxationsof these two muscles power

the flapping wings of flying insects. Figure 2.3 shows the muscle motions and how they

produce flapping.

(a) DVMs contracting (b) Transition (c) DLMs contracting

Figure 2.3: Cross-sectional view of the primary flight muscles (reproduced from [12])

The DLMs are the largest muscle in theM. sexta, comprising 5-8% of the total

body mass. [43] Both the DVMs and the DLMs are comprised of multiple muscle units.

The DLMs have five muscle units and the DVMs have six muscle units. Most research

concludes that the power output of theM. sextamuscle structure outputs 81-202 W/kg.

[12]

2.2 Design Considerations

The next step to the design of a bio-inspired system is to mimic the properties of the

biological creature as closely as possible. The techniquesused to manufacture FWMAVs

must be simple enough to be repeatable and durable enough to operate for multiple testing

cycles.
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Manufacturing is a major concern when considering the development of a FWMAV.

Without the capability to manufacture a FWMAV test bed, testing is not possible and so

manufacturing is discussed. Above everything else in the design considerations is weight.

Materials must be used that are durable to withstand the physics of small-scale flight but

light enough to achieve flight. As a prefatory step, the FWMAVwas split into similar

proportions as theM. sextaresulting in the proposal in Figure 2.4. The thorax actuatesthe

wings on theM. sextaand was therefore likened to the actuator; the abdomen holdsthe

organs that process energy and was therefore likened to the power source; and, the head

holds the eyes and antennae and was therefore likened to the sensors. The similarities can

easily be seen between Figure 2.2 and Figure 2.4 and they simply demonstrate a reasonable

mass allocation based on biomimicry.

Analysis showed that composites was an appropriate material for the structure and

wings to obtain the mass and elastic modulus requirements. [39] They provide the strength

to weight ratios desired for sustained flight in the insect-sized regime. Composites also

simplify manufacturing compared to other methods. The choice of a composite relies on

matching the characteristics of theM. sexta.

Once the FWMAV has been assembled with a reliable repeatableprocess, discussed in

Chapter III, the wings must be actuated to achieve flight. There are two types of actuators

being used in FWMAVs: linear and rotary. Much work has been done on the comparison

of the two types of actuators for FWMAVs. Many designs use rotary direct current (DC)

motors for actuation. [11, 13, 28] However, DC motors typically operate around 15,000

rpm so a gear reduction must be used to make them suitable for this application. A complex

crank-rocker mechanism is then used to transform the rotarymotion into the required linear

motion. The crank-rocker must be designed so that it is only partially constrained allowing

for some degree of controllability. [11] An unavoidable drawback to DC motors is the

9



Power Source

0.72 g

48%

Wings

0.09 g

6%

Sensors

0.11 g

7%

Actuator

0.58 g

39%

Figure 2.4: Proposed FWMAV mass properties for a 1.55 g vehicle

minimum size lower bound. The smallest DC motors currently weight approximately 200

mg. [3] The large size of DC motors places a lower bound on the size of FWMAVs, a

lower bound that is larger than desired. An often overlookedkey design goal is a low

acoustic signature to make vehicles less susceptible to detection. [37] Current DC driven

FWMAVs have significant acoustic noise, lowering their stealth capability. [27] Another

option is the linear actuator. With the linear actuator, there is no need for a crank-rocker

mechanism, which significantly simplifies the design. Linear acutators also have lower

acoustic signatures than DC motors. Table 2.2 summarizes the actuator options and the
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crank-rocker mechanisms. Note that Conn et al. published this summary in 2007, prior to

the control scheme discussed in Section 2.4. From Table 2.2,the linear actuators provide

the greatest number of adjustable parameters.
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2.3 The AFIT FWMAV

AFIT researchers have dedicated considerable time and resources to matching

the characteristics of theM. sexta, and those efforts will be summarized here. The

manufacturing techniques adopted by AFIT will also be reviewed in this section. For

a more detailed discussion of the development of the AFIT FWMAV, the reader is

encouraged to read reference 39.

2.3.1 Wings.

Previous work has been done to mimic theM. sextawings. The goal of the engineered

wing structure is to match the structural properties and thedynamic response of theM.

sexta. The materials of the wings were investigated with relationto two parts of the wing:

the venation and the membrane.

For the wing venation, AFIT researched multiple materials including isotropic metals,

shape memory alloys, ultraviolet (UV) cured polymers and composite high modulus thin

ply laminates. It was discovered early on that isotropic metals and shape memory alloys

would be too massive to meet the requirements of a FWMAV. It was found that UV

cured polymers did not provide the strength required to match the biological wing. The

experimentation did prove that a composite high modulus lamina, YSH-70A, was identified

as a potential match to the biological wing. YSH-70A fibers are a high modulus fiber that

are produced with a larger yield size. The YSH-70A fibers are manufactured with a RS-

3C epoxy resin embedded. To match theM. sextacharacteristics, the YSH-70A fibers are

layered in a 0-90-0 orientation. After further testing, this material and orientation were

found to be a nearly ideal material for engineering wing venation. [39]

For the wing membrane, a focus was based on the mass and strength of possible

choices. Two primary materials were investigated: Kapton and Mylar. Kapton is a

polyimide film manufactured by DuPont. Kapton is available in thicknesses of 12.5, 25,

and 75µm. Measurements found that a Kapton membrane would weigh approximately
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22.5 mg for an engineered wing similarly sized to a biological wing. This large mass

proved to be too large. Mylar is a polyester film manufacturedby DuPont used for high

strength applications and its dimensional stability properties. The Mylar used is 2.5µm

thick with an elastic modulus of 3.7 gigapascals, which is similar to the representative

biological value of 2.4 gigapascals. Measurements found that a Mylar membrane would

weigh approximately 4.5 mg making it the best choice for the engineered wing. [39]

2.3.2 Locomotion.

AFIT researchers have chosen to pursue the use of two linear actuators over a single

rotary actuator since linear actuators provide lower mass,provide lower acoustic signature,

and simplify the transmission. Table 2.3 taken from [3] (adapted from [10]) shows a

comparison between linear actuator options and the insect flight muscle. Since the table

is taken from many varying sources, it was used as a general comparison tool. From the

table, lead zirconate titanate (PZT) actuators are superior to insect muscles in all categories

except strain. A linkage was created to increase the magnitude of the piezoelectric actuator

tip displacement to overcome the strain deficiency.

AFIT researchers have chosen to use a bimorph piezoelectricactuator made of PZT to

drive the FWMAV. A bimorph piezoelectric actuator uses two layers of PZT material and

a passive layer sandwiched between them. [44] A bimorph piezoelectric actuator is shown

in Figure 2.5. The piezoelectric actuator is driven using simultaneous drive. Simultaneous

drive, also shown in Figure 2.5, is a more economical technique and prevents hysteresis

techniques associated with other driving schemes. This method initially charges each

actuator with a bias voltage,Vb, and then charges the central passive layer with the drive

voltage,Vd. [45]
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Table 2.3: Linear actuator characteristics [3]

Actuator Type Strain (%) Stress (MPa) Frequency

(Hz)

Specific

Energy

Density (J/g)

Efficiency

(%)

Synchronous Flight

Muscle

17 0.35 5.5-100 0.003 2-13%

Asynchronous Flight

Muscle

2 - 100-1046 0.002 5-29%

PZT 0.2 110 108 0.013 90

PVDF 0.1 4.8 107 0.0013 90

SMA (TiNi) 5 200 101 15 10

Solenoid 50 0.1 102 0.003 90

EAP (Dielectric Elas-

tomer)

63 3 104 0.75 90

V
b

V
d

Figure 2.5: Simultaneous drive bimorph PZT actuator

2.4 Control in FWMAVs

An emphasis has been placed on reducing weight, increasing agility, and integrating

robotics in future forces. [38] Increasing agility and integrating robotics indicates that

control is a pivotal part of the future of MAVs. In the past, the aerodynamics and

manufacturing proved to be such daunting tasks that controlwas set aside. However, as
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our understanding of the flight mechanisms has increased as well as our ability to micro-

fabricate small structures, control theory must make leapsand bounds to catch-up. In

Design and Control of Flapping Wing Micro Air Vehicles, Anderson introduced a new

method of control for FWMAVs actuated with piezoelectric actuators called bi-harmonic

amplitude and bias modulation (BABM). [3] BABM control withDHPC allows two

actuators to produce forces and moments in five DOF. It is withBABM that the AFIT

FWMAV would be controlled.

The axis system taken from Doman et al. is used and defined in Figure 2.6. [14]

Therefore, lift is in the positiveX direction during hover and thrust is in the negativeZ

direction during hover. Note that theX andZ-axes are relative to the FWMAV and thus

only align with lift and thrust direction while hovering. The side-force is out the FWMAV’s

right wing. Perhaps the most confusing aspect of transferring knowledge from fixed wing

aircraft to flapping wing aircraft is the difference in moment definitions. A moment about

theX-axis is still referred to as the rolling moment but it controls the direction of the thrust

vector in a plane parallel to the ground during hover. A moment about theY-axis is still

referred to as the pitching moment but it controls the direction of the thrust vector in a plane

perpendicular to the ground during hover. A moment about theZ-axis is still referred to as

the yawing moment but it controls the direction of the lift vector in a plane perpendicular to

the ground during hover. [36] Three angles define the wing position at any point during the

flapping cycle: the wing angle of attack,α, the wing stroke angle,φ, and the wing elevation

angle,θ. [8] Figure 2.6 identifies these three angles.

The rigid body equations of motion are presented here in the FWMAV body frame:
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Figure 2.6: Defined axis system [30]
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whereI is the inertia matrix,
[

p q r
]T

are roll, pitch, and yaw angular rates,
[

L M N
]T

are the roll, pitch, and yaw moments,
[

u v w
]T

are the translational velocities,m is the

mass,
[

X Y Z
]T

are the axial forces,RB
I is a rotation matrix from the inertial frame to

the body frame, andg is the gravitational acceleration. [41] This notation is common in

aircraft control.

There is no commonly agreed-upon control scheme for FWMAVs and so each

FWMAV designer has developed a unique control scheme to meettheir requirements.

Research has shown that discussions of FWMAV control can be split into two categories:

single-DOF control and multi-DOF control. The only necessary angle for wing flapping

is the wing stroke angle, and therefore, all controllers usethat as a DOF. In the case of

single-DOF controllers, it is the only DOF. Beyond that, developers have added the wing
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angle of attack and the wing elevation angle, usually in thatorder, to achieve further control.

The FWMAV with the most controllable DOF will be the most controllable vehicle. [6]

2.4.1 Flapping at Resonance.

Research shows that most biological fliers flap their wings atthe first natural frequency

of their muscle system. There is a tendency of a species to flapat a consistent frequency

across all flight regimes. Furthermore, researchers found that by artificially shortening

the insect’s wings, the wing beat frequency increases. Thisagrees with the hypothesis that

insects flap at their resonant frequency since the frequencyvaries inversely with the load on

the system. There is advantageous energetic expenditure when mechanical systems operate

at resonance. [16]

The advantage of low energetic expenditure is very useful tothe designer of the power

system for the FWMAV. Since the power system may be one of the heavier components,

any reductions will be manifested as benefits in range, endurance, speed, and payload.

Flapping at resonance does generate some concerns for the control developer though. For

instance, vehicles flapping at resonance will make it difficult to drive the wings in a pattern

other than harmonic motion. However, the need for energeticefficiency may overcome the

desire to avoid resonance and therefore, techniques must bedeveloped for non-harmonic

resonant flapping. [6]

2.4.2 Bi-harmonic Amplitude and Bias Modulation.

The control used for this research will be BABM. BABM generates non-harmonic

wing flapping creating non-zero cycle-averaged forces resulting in aerodynamic forces and

moments. [5] BABM was adapted from the split-cycle theory presented by Doman et al.

in reference 15. The idea is to combine two cosine waves with differing frequencies to

create one wing beat cycle allowing control over the translational and rotational degrees

of freedom of the vehicle. An example is shown in Figure 2.7. The blue line represents a
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symmetric cosine wave and the green line represents a split-cycle cosine wave. The up and

down-strokes are not symmetric, that is, the wing travels faster in one than the other.
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Symmetric Cosine Wave
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Figure 2.7: Split-cycle wing trajectory,τ = 0.25

BABM control allows two piezoelectric actuators to produceforces and moments

in five DOF. The piezoelectric actuators operate in one DOF, the stroke angle. The

equations defining BABM were developed in reference 6. The stroke angle function,φ,

in Equation 2.3, is used to define the wing stroke angle.

φ (t) = A{M1 (τ) cos
[

ωt + β (τ)
]

− M2 (τ) sin
[

2ωt + 2β (τ)
]

} + η (2.3)

whereA is the stroke amplitude,τ is the split-cycle shift,η is the stroke bias, andω is the

flapping frequency.M1 and M2 are the Fourier coefficients andβ is the phase shift. The

first two Fourier terms provide an approximation to the split-cycle equations and provide
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the title "bi-harmonic". [5, 30]M1, M2, andβ are functions of the split-cycle shift and are

defined by the following functions:

M1 (τ) =
cos(2τ)

Mωn

(2.4)

M2 (τ) =
0.34 sin(3.3τ)

M2ωn

(2.5)

β (τ) = −2τ − φωn (2.6)

whereMωn is the magnitude of the wing displacement at the first system resonance,M2ωn

is the magnitude of the wing displacement at twice the first system resonance, andφωn is

the phase of the wing displacement at the first system resonance. [30] The introduction of

the resonance terms was a result of using DHPC. BABM calculates the wing stroke angle

using Equation 2.3 for one DOF; but, the wing angle of attack is not held constant. The

wing angle of attack is left as a function of the aerodynamic forces on the wing, and is

limited by mechanical rotation stops so that the wing does travel perpendicular to the lift

vector. Future research is required to determine the optimal angle for rotation stops but the

current design uses 45°.

For control, the BABM parameters are varied to produce the moments and forces

required to both trim and maneuver the FWMAV. The expected forces and moments caused

by varying the control parameters are listed in Table 2.4. These expectations serve as a

starting point for data collection. [6]
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The amplitude controls the overall stroke angle of the FWMAV. It can be thought of

as a scaling factor. Amplitude has units of voltage; for thisresearch, the value of amplitude

directly correlated to the voltage from the computer to the amplifier. An amplitude of 1

denotes a maximum and minimum value of the cosine wave. Therefore, a wave with an

amplitude of 2 will have a maximum twice as high as a wave with an amplitude of 1. This

is represented in Figure 2.8.
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Figure 2.8: Effect of amplitude,A, on drive signal,τ = 0, η = 0 V

The split-cycle shift controls how much the cosine wave is shifted. It has been shown

that control could be achieved by limiting the split-cycle shift to a maximum of±0.3 and

that the negative values exactly mirror the positive values. [4] The split-cycle shift effect

on the drive signal is shown in Figure 2.9. Note thatτ = 0 is a pure sinusoid.
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Figure 2.9: Effect of split-cycle shift,τ, on drive signal,A = 1 V, η = 0 V

While the amplitude scales the magnitude of the signal, the stroke bias adds a constant

bias to the drive signal. The stroke bias is in the same units as the signal, and therefore

a stroke bias of 1 shifts the signal 1 volt in the positive direction. This effect is shown in

Figure 2.10.

2.5 Power

The focus on this paper is the cost of power. The power sourcesmust also be low

weight, and are, in this author’s opinion, the greatest obstacle facing the future of FWMAVs.

Recall that Figure 2.4 shows the mass properties of the FWMAV. The primary use of

power is the locomotion of the FWMAV with secondary uses including powering the

ISR sensors and communications. These secondary uses are disregarded for this research

mostly due to uncertainty of future technological advancements. To power the selected
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Figure 2.10: Effect of stroke bias,η, on drive signal,A = 1 V, τ = 0

piezoelectric actuators, the FWMAV requires high voltagesand low currents. Storing

power and supplying the power to the drive system will prove very challenging to the future

designer. Understanding the power requirements of the BABMcontrol scheme will help

the designer optimize control logic to minimize the power requirements and save weight.

2.5.1 Power System.

The basic power system of a FWMAV will include a power supply and, due to the high-

voltage required by piezoelectric actuators, a booster. Also included in the definition of a

power system is the distribution network and the utilization system. [19] The piezoelectric

actuator is the utilization system in the FWMAV and was discussed earlier in this chapter.

The distribution network will not be discussed because the voltages and currents involved

were within the realm of current wire and circuitry technology.
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2.5.2 Proposed Power Boosters.

Karpelson et al. eloquently offer three techniques to achieve the high voltage/low

current requirement: a boost converter/voltage multiplier hybrid, a boost converter

combined with an autotransformer, and a power amplifier using a piezoelectric transformer.

The following explanations appear in reference 26.

1. Hybrid Voltage Multiplier

A hybrid circuit consisting of a conventional boost converter cascaded

with a switched-capacitor charge pump circuit, as shown in Figure 2.11,

has been considered previously for piezoelectric microrobots and electro-

static microelectromechanical systems (MEMS) devices. Operating in a

regime of high efficiency, the boost converter stage provides a moderate

boost to the input voltage, while its pulsed output naturally charges up

the capacitor ladder through the diodes. The charge pump multiplies the

boost converter’s output voltage, ideally by a factor equalto the number

of charge pump stages. The maximum output power is limited bythe

size of the charge pump capacitors and the maximum output power of the

boost converter.

Figure 2.11: Hybrid voltage multiplier [26]

25



2. Converter with Autotransformer

Replacing the inductor in the standard boost converter withan autotrans-

former, as shown in Figure 2.12, results in a combination of the boost

and flyback voltage converter topologies. Similar to the boost converter,

current ramps up in the primary winding of the transformer when the

switching transistor is conducting. When the switch turns off, the recti-

fier diode sees a combination of the input voltage, the primary winding

voltage, and the secondary winding voltage, which depends on the turn

ratio between the primary and secondary windings. Voltage gain is there-

fore determined by the duty cycle of the switching transistor and the turn

ratio of the transformer. Maximum output power is limited bythe current

rating of the switching transistor and the transformer. Forhigh voltage

gains, this method has a much lower parts count than the hybrid con-

verter. However, the rectifier diode and output capacitor must be rated for

the output voltage. Additionally, a custom transformer maybe required,

since no commercial parts under 2g could be identified.

Figure 2.12: Boost converter with autotransformer [26]

3. Power Amplifier

Piezoelectric transformer (PT) have a high voltage gain ratio and high

power density (up to 40 W/cm3). Due to their simple geometries, they

26



scale better to small sizes than magnetic transformers and hold potential

for on-chip integration. Many geometries exist with the same basic

operating principle - the "primary" side of the PT excites mechanical

oscillations in the piezoelectric material, while the “secondary” side

generates a voltage. In order to obtain high voltage gain andefficiency,

a PT has to operate close to the mechanical resonance frequency, where

its electrical response can be approximated by the equivalent circuit in

Figure 2.13(a). The gain of a PT is also highest at low loads, making

it a good candidate for the high-voltage, low-current requirements of

voltage-mode actuators. In order to reduce switching losses, as well as

losses associated with charging and discharging the input capacitance

of the PT, a resonant driving stage is used. Figure 2.13(b) shows the

Class "E" resonant topology, selected here because it has a low number

of additional components. The inductor is selected to resonate with the

input capacitanceCin of the PT at a frequency close to the mechanical

resonance frequency. The resonance transfers energy to thePT from the

inductor when the switch is off. The switch is turned on again as soon

as the voltage acrossCin back down to zero. Regulation of the output

voltage is achieved by varying the switching frequency. [25]

The first two options were tested by Karpelson et al. and foundto be viable options for

powering a FWMAV. The third option, a PT, was not able to be manufactured with

sufficient voltage gain.

2.5.3 Power Supply.

During the development of other MAVs, researchers have investigated using power

sources including internal combustion engines, fuel cells, micro turbines, solar cells, and
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Figure 2.13: PT transformer equivalent circuit (a) and Class "E" power amplifier (b) [26]

batteries. [13, 21] Researchers have agreed that battery technology is the only power

supply currently feasible for use in FWMAV by choosing batteries for their designs.

[13, 21, 27] Researchers have found that flight endurance mainly depends on the battery.

[46] Researchers have spent less time focused on the power applications of FWMAVs

because controlled flight is still difficult and batteries are available to supply short flights for

experimental use. However, before FWMAVs can be used in the field, battery technology

must improve so that FWMAVs can perform longer duration missions.

2.6 Chapter Summary

The research presented in this chapter was only a small portion of the literature

available on the topic of FWMAVs. Furthermore, hands-on training provided by

researchers in the field was extremely beneficial. The knowledge obtained during

the literature review paved the way for smooth testing and analysis, presented in

Chapters III and IV.
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III. Test Methodology

This chapter will focus on the methodology used to collect data for analysis. AFIT

researchers have been working on the FWMAV project for many years and has

seen many iterations of the fabrication process. This research used the most recent

iteration, described in reference 39. Furthermore, a proven testing technique was previously

developed for collecting the force, moment, and power data of the FWMAV. A more

detailed explanation of the methods used can be found in References 3, 39, and 40.

3.1 Flapper

AFIT researchers have been developing the manufacture of engineered wings for many

iterations and understanding the process was key to this research. As mentioned in Chapter

II, AFIT researchers use a YSH-70A carbon fiber for the majority of structural members.

The flapper tested, pictured in Figure 3.1, was constructed in multiple parts and assembled

later. This flapper differs from the one that will likely be used in an operational FWMAV

but serves as a good test-bed for experimentation.

3.1.1 Flapper Materials.

Few materials were used in the FWMAV construction, which simplified the

manufacturing process. The flapper shown in Figure 3.1 was constructed of three main

materials. The YSH-70A carbon fiber served as the main structural component. Kapton

served as a flexible joint to allow for movement between carbon fiber parts. Mylar served

as the wing membrane. Pyralux is a sheet adhesive that was used to bond the Kapton to the

carbon fiber.
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Figure 3.1: Constructed flapper

3.1.1.1 YSH-70A Carbon Fiber.

As stated above, the main structure of the flapper was made of YSH-70A carbon

fiber. The carbon fiber provides an excellent stiffness-to-weight ratio. The carbon fiber

was purchased in a roll of 12-inch wide "tape" that was pre-impregnated with RS-3C resin.

All the fibers in the tape are oriented in the same direction. The fiber orientation provided

excellent strength in one direction and allowed various layup orientations to determine the

appropriate configuration. The carbon fiber was cut into appropriate size sheets to fit in the

multilayer press. The sheets were oriented in the 0-90-0 configuration and inserted into the

multilayer press. A multipress heats the carbon fiber to 192°C and applies 100 N/cm2 for

120 minutes to cure the carbon fiber. These 3-layer carbon fiber sheets form the basis for

construction.

3.1.1.2 Kapton.

As stated above, the Kapton was used as the flexible joints between carbon fiber

parts. Kapton is a tough, aromatic polyimide film with a balance of properties over a
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wide temperature range. [17] The Kapton used is Kapton HN 50 and 100. Kapton HN 50

is 12.7µm thick and the Kapton HN 100 is 25µm thick. Kapton HN 50 was used for the

linkage and Kapton HN 100 was used for the passive rotation joint. Kapton HN 50 was

also used as the joints for a fold-able main support structure as shown in Figure 3.1.

3.1.1.3 Mylar.

As stated above, the Mylar was used as the wing membrane. Mylar is a polyester film

made from polyethylene terephthalate (PET) used for a broadarray of applications. [18]

Mylar was chosen for this application mainly for its superior weight qualities. It also bonds

well with the RS-3C resin found in the carbon fiber.

3.1.2 Tools of Construction.

A few key apparatuses were required for the construction of the FWMAV. As

expected, small hand tools such as razor blades, magnifyingglasses, vises, medical

harpoons, and picks were used in the assembly. These tools and their uses were semi-

dependent on the assembler. Other than that, the multipressmentioned earlier, and a laser-

machining center were all that was needed.

The multipress used is a LPKF MultiPress S, shown in Figure 3.2. The MultiPress

S was designed to laminate multilayer composites. The user has the ability to program

different profiles, consisting of different pressure, temperature, and durations settings, into

the MultiPress S. [32] The MultiPress S was used to laminate the sheets of carbon fiber, to

bond the Kapton to the carbon fiber via Pyralux, and to bond theMylar to the carbon fiber.

The laser-machining center used is a LPKF Protolaser U, shown in Figure 3.3. The

LPKF Protolaser U is designed to process micro-material by using an UV laser to ablate

materials. [33] It allows the user the ability to program specific laser settings and tool
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Figure 3.2: LPKF Multipress S

paths for repeatable results. The Protolaser U was used to cut carbon fiber and carbon

fiber-Kapton layups into the parts needed for assembly.

3.1.3 Flapper Construction.

The flapper was constructed from a modular design. Parts werecreated and then

assembled into the final product. The different parts are the structure (Figure 3.4a),

the linkage (Figure 3.4b), the rotation joint (Figure 3.4c), the wing (Figure 3.4d), the

passive rotation stops (Figure 3.4e), and the assembly clips (Figure 3.4f). Once the

flapper was assembled, it was attached to a rapid prototyped base with a manufactured

piezoelectric actuator. The piezoelectric actuator used was an 60/20/0.6 strip actuator

(bimorph equivalent) purchased from Omega Piezo Technologies, Inc. since research is

ongoing to optimize in-house PZT actuators.
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Figure 3.3: LPKF Protolaser U

3.1.3.1 Structure and Linkage.

The structure and linkage, once constructed separately, are now constructed together

to increase repeatability and reliability. The structure serves as the connection between

the linkage and the mounting base. The structure was built sothat the wing has room to
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(a) Structure (b) Linkage (c) Rotation joint

(d) Wing (e) Rotation stops (f) Assorted assembly clips

Figure 3.4: Flapper parts for assembly

actuate without interfering with the testing base. The structure was aligned in the positive

Z-direction; for an operational FWMAV, the structure will likely be oriented in the negative

Y-direction to provide static stability. The linkage was effectively the transmission for the

FWMAV. The linkage connects the piezoelectric actuator to the rotation joint and translates

the linear motion of the piezoelectric actuator to rotational motion of the wing. The linkage

is a collection of four beams of different length, shown in Figure 3.5. These four lengths

define the ratio between deflection and rotation. The linkagewas designed to translate±1

mm deflection to±60°travel with lengths of:

l1 = 2.96 mm,l2 = 2.36 mm,l3 = 1.25 mm,l4 = 2.50 mm.
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Figure 3.5: Final linkage configuration

To construct the structure/linkage, two sheets of Pyralux were applied to two 3-layer

sheets of carbon fiber and were cured in the multipress at 192°C and 100 N/m2 for 4 minutes.

This step eases working with the fragile Pyralux. Kapton HN 50 was sandwiched between

the two sheets of carbon fiber/Pyralux. That was loaded into the multipress and cured at

192°C and 30 N/m2 for 60 minutes. The entire layup is shown in Figure 3.6. The final

product was a large sheet that can then be machined to the proper dimensions. The final

layup was loaded into the laser-machining center and the dimensions were loaded into the

software. The laser-machining center follows the cutting routine and the structure/linkage

was complete as shown in Figures 3.4a and 3.4b.
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Figure 3.6: Layup for multipress to make parts for assembly

3.1.3.2 Rotation Joint.

The rotation joint connects the linkage to the wing, allowing the wing to rotate. The

geometry of the rotation joint was designed to mimic the rotational stiffness of theM. sexta.

The Kapton layer was also changed to match the rotational stiffness. It has also been

designed to align in front of the mass and area centroids, again mimicking theM. sexta.

All three variables resulted in a joint that closely replicates theM. sexta. Attached to the

rotation joint are the passive rotation stops. They were simply pieces of carbon fiber that

limit the amount the wing can rotate. As stated in Chapter II,rotation was limited to±45°.

The construction of the rotation joint was very similar to the construction of the

structure/linkage. The main difference was the Kapton used. The rotation joint uses Kapton

HN 100, which was 25µm thick. This Kapton was used to match the rotational stiffness of

theM. sexta. Once the entire layup was cured, it was then machined in the laser-machining

center just as the structure/linkage. The complete product is shown in Figure 3.4c. The

passive rotation stops were even simpler. A sheet of 3-layercarbon fiber was cut in the

laser-machining center resulting in the stops shown in Figure 3.4e.
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3.1.3.3 Wing.

The wing was discussed in detail in Chapter II. Much researchwas focused on the

wing design. The result is a close match to theM. sexta.. The construction of the wing

was also simple. The wing was machined from a 3-layer sheet ofcarbon fiber on the laser-

machining center. The result was the venation pattern of thewing. A piece of Mylar was

then cured on the wing venation in the multipress at 192°C and30 N/m2 for 60 minutes.

The remaining Mylar was then cut off in the laser-machining center resulting in Figure 3.4d.

A recent effort has been made to combine the wing and rotation joint. The effort has

resulted in a more repeatable design. For the testing performed herein, both configurations

were used. No variation in the performance was found betweenthe non-combined and

combined wing/rotation joint assemblies.

3.1.3.4 Assembly Clips.

The assembly clips were manufactured in the same way as the passive rotation stops.

They come in three different configurations for different purposes. E-clips are shaped

like an "E" and were used to make the square box of the linkage.The size of E-clips is

dependent on the size ofl3 for the linkage. C-clips are shaped like a "C" and were used

to attach the wing to the rotation joint. The last configuration was a modification of the

E-clip, the extended E-clip is a taller E-clip, on which a tracking disc can be placed to

measure the stroke angle using image-processing techniques. All configurations are shown

in Figure 3.4f.

3.1.4 Assembly.

A systematic process for the flapper assembly can be found in Reference 39. The steps

are summarized here for completeness.

1. Collect precut parts shown in Figure 3.4.

2. Fold the sides of the triangular part of structure shown inFigure 3.4a.

37



3. Bond the rectangular front plate of structure to the triangular part.

4. Bond the linkage shown in Figure 3.4b to the top of the assembled structure.

5. Fold the linkage into the shape shown in Figure 3.5 using a straight pin.

6. Insert and bond E-clips, Figure 3.4f, to the linkage to hold the shape.

7. Bond the passive rotation joint, Figure 3.4c, to the top ofthe linkage using the secured

E-clips as guides.

8. Position the wing, Figure 3.4d, on the passive rotation joint using a straight pin.

9. Secure the wing to the passive rotation joint by bonding C-clips, Figure 3.4f, to the

wing and passive rotation joint.

10. Attach the passive rotation stop, Figure 3.4e.

11. If an extended E-clip was used, attach the tracking disc.The assembled flapper is

shown in Figure 3.1.

12. Attach assembled structure to plastic base and piezoelectric actuator.

13. Use pins to secure the structure to the base.

14. Prepare actuator tip with a thermoplastic adhesive.

15. Use heat gun to attach the linkage to the piezoelectric actuator so the wing is parallel

to the floor.

16. The flapper is completed as shown in Figure 3.7.
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Figure 3.7: Constructed flapper with piezoelectric actuator

3.2 Experimental Setup

To test the effects of BABM on the FWMAV, a test rig was designed and constructed

by AFIT. It provides the ability to prescribe an input signalto drive the stroke angle and

measure resulting forces in all six DOF. The entire experimental setup is show in Figure 3.8.

A computer running MATLAB software was connected to the equipment via a data

acquisition (DAQ) module. MATLAB was used to generate a signal based on user-specified

values of amplitude, split-cycle shift, and stroke bias. The signal was then sent to a voltage

amplifier via the DAQ module. The signal traveled via coaxialcables to the piezoelectric

actuator on the flapper. The flapper was attached to the force/moment balance, which

collected data and transferred it back to the computer via the DAQ module. A displacement

laser was setup to measure the tip displacement of the piezoelectric actuator. This system

provided very repeatable and reliable test results.
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Figure 3.8: Experimental setup

The DAQ module used is a National Instrument USB-6229. This DAQ allows for

inclusion of all data with 16 inputs and 4 outputs. The DAQ module also interfaces

easily with the computer and MATLAB. [9] The amplifier used isTrek’s PZD700A. The

PZD700A is specifically designed to drive piezoelectric actuators. It offers adjustable

voltage gain by use of a potentiometer. [42] The voltage gainwas set to 30 V/V for all

tests in this report. The voltage and current sent to the piezoelectric actuator was directly

measured from the amplifier out port. The displacement sensor used is an optoNCDT 1800.

This non-contact displacement sensor uses optical triangulation to measure distance and

has a measuring range of 20 mm with a resolution of 2µm at a measuring rate of 5000 Hz.

[34]

40



A very sensitive force/moment balance was needed to measure the small forces and

moments created by the FWMAV. The force/moment balance used is an ATI Nano17

Titanium. The ATI Nano17 Titanium was the most sensitive commercially available six

DOF balance to AFIT’s knowledge at the time of purchase. Prior testing at AFIT has

shown that this transducer is able to sense forces in thex, y, andz directions greater than

3.3 mg, 2.8 mg, and 1.91 mg. [7] The ATI Nano17 Titanium was mounted to a stand with

an interface for the flapper. Previous AFIT research has validated the measured values of

the force/moment balance. The balance used, like most six DOF balances, has interactions

between the forces and moments. Those interactions were corrected in post processing.

The data were collected by an ATI Netbox at 5000 Hz and provided to the computer for

processing.

3.3 Experimental Procedure

After the entire flapper was assembled and attached to the rapid prototyped base and

piezoelectric actuator, it was attached to the test rig. Thefirst step was to determine

the natural frequency of the system so that the flapper could be driven at resonance. A

frequency response function (FRF) was calculated by exciting the flapper with a linearly

swept chirp between 0 Hz and 100 Hz. The output of the piezoelectric actuator was

recorded and the input voltage was recorded. The data was split into five samples with

no overlap. A Hanning window was then applied to the data. Theauto and cross power

spectral density (PSD) were calculated for each of the five samples and then averaged. The

FRFs were calculated from the PSDs. A sample FRF is shown in Figure 3.9. Resonant

frequencies of the system were around 20-25 Hz. A state-space model of the system was

obtained using an eigenvalue realization algorithm. The natural frequency of the system

was determined from the FRF and the state-space model was used to generate the drive

signal with BABM. The signal would last for sixty cycles, approximately three seconds.
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At this point, a drive signal had been generated with specified BABM parameters specific

to the system. These techniques came from Reference 3.
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Figure 3.9: Sample FRF for a flapper

The drive signal was sent from the computer, through the amplifiers to increase the

signal voltage, and on to the piezoelectric actuator to drive the flapper. The drive signal

was also sent back to the DAQ module for collection and later analysis. The forces and

moments from the wing motion were collected from the balanceand sent to the DAQ

module. The data samples were averaged and cycle average forces and moments were

calculated and saved to the computer along with the raw data for later analysis.

For each sample point, at least three tests were run, consisting of sixty cycles each.

Different flappers were also used to account for any manufacturing variation. Because it

was difficult to identify malfunctioning piezoelectric actuators without applying a voltage,
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before each test, the actuators were excited and the deflection was qualitatively assessed

for proper functionality.

3.3.1 BABM Parameters.

A benefit of first completing single-wing flapper testing was obtaining an understand-

ing of the BABM parameters. From examining Equations 2.3 to 2.6, some conclusions can

be drawn on the values of the BABM parameters. It can be seen from Equations 2.4 and 2.6

that a split-cycle shift from−π/2 to π/2 would affect the stroke angle. From Equation 2.3,

it can be seen that a stroke bias from−π to π would affect the stroke angle. For the au-

thor’s and reader’s edification, these ranges were evaluated with a single-wing flapper, at

least where possible. Voltage limitations on the actuator placed limitations on the BABM

parameter values available for testing and ultimately for later implementation. These tests

identified the limitations of the split-cycle shift originally identified by Anderson and will

be discussed in Chapter IV. [4] In a dual-wing flapper, only the operationally representative

ranges of the BABM parameters were used for testing.

3.3.2 Design of Experiments.

Critical to the analysis were any interactions between the power and the forces/mo-

ments of the flapper. A design of experiments (DOE) was made with the help of a statisti-

cal analysis program. The DOE would identify any second-order interactions not predicted

between the BABM parameters and the resulting forces and moments. For the DOE, JMP

was used. JMP is statistical software that gave a graphical interface to display and analyze

data. [24] Two DOEs were made, one for a single flapper and one for a dual-wing flapper.

They are presented below in Tables 3.1 and 3.2.

JMP provided two main services used in these analyses: theprediction profilerand the

screeningtool. Both tools were based off of actual data. The prediction profiler provided

a trace for each of the adjustable variables, the BABM parameters, and returns predictions
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Table 3.1: DOE parameters for a single-wing flapper

Amplitude,A Split-cycle Shift,τ Stroke Bias,η

0.5 -0.3927 -0.7854

0.5 -0.3927 0.7854

0.5 0 0

0.5 0.3927 -0.7854

0.5 0.3927 0.7854

1.5 0 0

1.5 0 -0.7854

1.5 0 0

1.5 0 0

1.5 0 0.7854

1.5 0.3927 0

2.5 -0.3927 -0.7854

2.5 0.3927 0.7854

2.5 0 0

2.5 0.3927 -0.7854

2.5 0.3927 0.7854

for each of the outputs, the power, and the forces and moments. This proved very useful

in determining the relations of variables and outputs. The screening tool identified which

parameter(s) had second-order effects on the outputs. This proved helpful to determine

which BABM parameter had the greatest effect on power and lift. [24]
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3.4 Chapter Summary

A foundation has been set to proceed with testing. This chapter was laid out to prepare

the reader for Chapter IV where the results are presented.
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Table 3.2: DOE parameters for a dual-wing flapper

Amplitude Split-cycle Shift
Stroke Bias,η

Right Wing,AR Left Wing, AL Right Wing,τR Left Wing, τL

0 0 -0.25 -0.25 0.75

0 0 -0.25 0 0

0 0 -0.25 0.25 -0.75

0 0 0.25 -0.25 -0.75

0 0 0.25 0.25 0.75

0 1.25 0 -0.25 0.75

0 1.25 0.25 0.25 0

0 2.5 -0.25 -0.25 -0.75

0 2.5 -0.25 0.25 0.75

0 2.5 0.25 -0.25 0.75

0 2.5 0.25 0.25 -0.75

1.25 0 0 0.25 -0.75

1.25 0 0.25 -0.25 0

1.25 1.25 -0.25 -0.25 -0.75

1.25 1.25 -0.25 0.25 0.75

1.25 2.5 0.25 0 0.75

2.5 0 -0.25 -0.25 -0.75

2.5 0 -0.25 0.25 0.75

2.5 0 0 0 0.75

2.5 0 0.25 -0.25 0.75

2.5 0 0.25 0.25 -0.75

2.5 1.25 0.25 0 -0.75

2.5 2.5 -0.25 -0.25 0.75

2.5 2.5 -0.25 0.25 -0.75

2.5 2.5 0 -0.25 -0.75

2.5 2.5 0 0.25 0

2.5 2.5 0.25 -0.25 -0.75

2.5 2.5 0.25 0.25 0.75
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IV. Analysis and Results

Data collected according to the process outlined in Chapter III are presented here. This

chapter follows a chronological layout, testing first a single-wing flapper and then a

dual-wing flapper. Analysis techniques are presented priorto their use to prevent repeated

figures and confusion. The importance of each figure is also discussed in this chapter.

4.1 Analysis

Once raw data was collected, a series of data processing techniques were applied.

These techniques averaged multiple tests, generated cycleaverage values, and centered the

moments on the center of pressure.

4.1.1 Data Processing.

The data collected by the DAQ module immediately went through post-processing in

MATLAB. The data from the balance came in six columns (one foreach force and moment)

of voltage measurements. Tare data was removed from the dataand averaged to obtain an

average tare to remove from the data. The tare value was also removed from the sample

data. The sample data were then passed through a balance interaction matrix to remove

coupling between the sensors in the balance. The balance interaction matrix also converts

the voltages measured by the balance into forces and moments. The result was sample data

in nanograms and nanogram-millimeters for the entire sample. The output of the amplifier

(input to the flapper) was central to this research. The data was received as voltage and

current measurements in voltage. The measurements was converted to the correct units per

manufacturer specifications and tare data were removed. A sample of raw data for two flap

cycles is presented in Figure 4.1.
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Figure 4.1: Sample of raw lift data

Since this data occurred over multiple wing cycles and therewas no good way to

account for instantaneous aerodynamic forces and moments that the flapping generates,

cycle-averaged values for forces and moments were used. Only 80% of the collected data

was used in the cycle-averaging to avoid any ramp up or down transients associated with

the flapper as the sample begins and ends. The cycle-average lift for the data in Figure 4.1

is 115 milligrams. Since multiple tests were taken at each sample, the data were then

averaged over the tests resulting in one value. The power wascalculated from the collected

voltage and current values from the amplifier. The data was passed through the Simulink

model shown in Figure 4.2. The power equation for each cycle that is incorporated into the

model is given by

P =
1
T

t
∑

t−T

Vrms(ωst) Irms (ωst) cos(γ)∆t (4.1)

whereP is the power,T is the cycle period,t is the instantaneous time,Vrms is the root

mean square of the voltage data,ωs is the sample rate,Irms is the root mean square of

the current data,γ is the phase angle between the current and voltage, and∆t is the time

between samples. The power data was then cycle-averaged in the same manner as the force

and moment data. These data sets were later analyzed.
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Figure 4.2: Simulink model to compute power

4.1.2 Center of Pressure.

To evaluate the true effect that the BABM parameters had on the moments generated

by the flappers, the measured moments had to be calculated about the center of

pressure. The nomenclature used in this section is a combination of nomenclature from

References 1 and 14. Figure 4.3 shows the dual-wing flapper and the center of pressure and

balance axes systems. Since the wing moves, the center of pressure for a flapping wing is

varies over the stroke of the wing. The center of pressure canbe approximated on the wing

by

xcp =
−c
5

(

3b2 + 2bR+ R2

b2 + bR+ R2

)

(4.2)

ycp =
3
5

(

b3 + b2R+ bR2 + R3

3b2 + 2bR+ R2

)

(4.3)

zcp = 0 (4.4)

wherec is the maximum chord length,b is the distance from the wing root to the wing

break point (the point were the chord length begins to decrease) along they-axis, andR

is the length of the wingspan. [14] Figure 4.4 shows the dimensions of the wing used for
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testing. These measurements resulted inxcp = −10.41 mm,ycp = 20.16 mm, andzcp = 0

mm. These measurements defined the location of the center of pressure on the wing, but

the center of pressure in relation to the balance was needed.
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Figure 4.3: Dual-wing flapper center of pressure and balanceaxes
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Figure 4.4: Aerodynamic dimensions of FWMAV wing
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In order to find the center of pressure in relation to the balance, the instantaneous

location of the wing was needed. To determine the stroke angle of the wing, the deflection

of the piezoelectric actuator was used with Equation 4.5. [20, 39]

θ = −
π

2
+ arccos

{

[

l23 + (l1 + l2 − l4 − δ)
2 + l23 + (l2 − l4)

2 − l21
]

×

[

2
√

l23 + (l2 − l4)
2 ×

√

l23 + (l1 + l2 − l4 − δ)
2

]−1 }

+ arctan

(

l3
l1 + l2 − l4 − δ

)

+ arctan

(

l2 − l4
l3

)

(4.5)

For the dual-wing flapper, the displacement sensor could notrecord deflection because

the second flapping wing was obstructing it and so an approximation was used. An

approximation for cycle-average displacement was developed for amplitude, split-cycle

shift, and stroke bias. Figures 4.5, 4.6, and 4.7 show the actual measurements and the tests.

Recall that, for this research, the amplitude voltage directly correlates to the signal sent to

the amplifier. The red lines are polynomial fits of the data. The resulting approximations

are

dA = −0.037A3 + 0.116A2 + 0.153A+ 0.028

dτ = 0.002τ − 0.002

dη = 0.157η − 0.003

(4.6)

wheredparameteris the displacement of the actuator. The total displacementis simply the

summation of the parameter displacements. The data showed that the contribution of split-

cycle shift was minimal and was therefore ignored. From the equations above, a cycle-

average displacement for the actuator was calculated and used for Equation 4.5 for the dual-

wing flapper. The total distance including contributions from the mounting configuration

and the wing angle were summed to get an average distance between the center of pressure

and the balance.
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Figure 4.5: Actuator displacement vs. amplitude,A(n)

From this point, Equations 4.7, 4.8, and 4.9 were used to remove the lift, side force,

and thrust contributions from the roll, pitch, and yaw moments.

L = Mbal
x − cRdR,zY− cLdL,zY− cRdR,yZ + cLdL,yZ (4.7)

M = Mbal
y + cRdR,zX + cLdL,zX − cRdR,xZ − cLdL,xZ (4.8)

N = Mbal
z + cRdR,xY+ cLdL,xY+ cRdR,yX − cLdL,yX (4.9)

whereL, M, andN are the roll, pitch, and yaw moments respectively;Mbal
i is the balance

measured moment about thei-axis; cR andcL are the contribution factors of the right and

left wing respectively;dR,i anddL,i is the distance to the center of pressure along thei-axis to

the right and left wing respectively; and,X, Y, andZ are the axial forces. The contribution

factor accounted for the difference in amplitude between the left and right wing and were
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Figure 4.6: Actuator displacement vs. split-cycle shift,τ(n)

calculated from

cR =
AR

AR + AL
cL =

AL

AR + AL

For example, when the amplitudes were symmetric, the contributions were each 0.5 and

half the force was attributed to the left wing and half the force was attributed to the right

wing. These calculations were performed at each sample point and then cycle-average

values were calculated as described in Chapter III.

A sample of the results of correcting the moments is shown in Figure 4.8. These data

points were obtained by varying the amplitude of the right wing. The resulting data from

that test is shown in Figure 4.29. The pitch moment about the balance closely followed

the trend of the lift data, which makes sense because it was the largest force with the
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Figure 4.7: Actuator displacement vs. stroke bias,η(n)

largest moment arm. Moving the moment to the center of pressure provided moments that

represent the FWMAV in free flight.
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4.2 Single Wing Flapper

The single-wing flapper was used to investigate the effects of power on the three

BABM parameters independently. The tests were also used to familiarize the author with

the BABM control theory. Thirty-five test matrices were evaluated on the single-wing

flapper resulting in 879 test cases of data. Some data sets were not used because analysis

revealed various errors such as broken actuators or malfunctioning equipment. In all,

approximately 275 test cases were kept for analysis. It is obvious from the number of tests

that there was a steep learning curve. For the single-wing flapper forces and moments, only

the lift, thrust, and pitch are shown because they can be correlated to a dual-wing flapper

configuration. The side force, roll, and yaw of single-wing flapper are not correlatable to

the results of a dual-wing flapper. Table 4.1, a partial reproduction of Table 2.4 in Chapter II,

served as a basis for comparison to the forces and moments generated.

Table 4.1: Baseline of aerodynamic forces and moments caused by BABM parameters [6]

Lift, X Symmetric Amplitude,AL = AR

Side Force,Y -

Thrust,Z Symmetric Bi-harmonic Split-Cycle,τL = τR

Roll, L Asymmetric Bi-harmonic Split-Cycle,τL , τR

Pitch,M Symmetric Stroke Bias,ηL = ηR

Yaw, N Asymmetric Amplitude,AL , AR

4.2.1 Amplitude.

The first test performed varied the amplitude of the stroke angle from the range of

zero to three. Of course, with zero amplitude the flapper did not flap. At an amplitude
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of three, the wing began to interact with the structure. For those reasons, only data from

A = 0.5→ 2.5 are presented here.

Figure 4.9 shows the change in the cycle average power as a function of the amplitude.

The curve follows an exponential relation. Reference 31 shows that the power requirements

of amplitude follow a linear path, but that research was performed over a smaller range.

Over the range most likely to be used,A = 1.5→ 2.5, amplitude was linear to the power

requirements.
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Figure 4.9: Power vs. amplitude,A(n), τ = 0, η = 0 V

Figure 4.10 shows the forces and moments as a function of the amplitude. Amplitude

affected the lift the greatest, which agrees with Table 4.1 for the case of symmetric

amplitude. By comparison, the thrust was insignificant compared to the lift generated.
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There also seemed to be little relation between amplitude and thrust when the error bars

were considered. Amplitude also greatly affected the pitch moment of the FWMAV.
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Figure 4.10: Forces and moments about the balance center vs.amplitude,A(n), τ = 0, η =

0 V

Plots for the ratio of power to lift as a function of parameterwere also generated. For

this figure and similar figures, keep in mind that a smaller number is preferred. A value of

A = 1 served as a baseline of comparison for the single-wing flapper. Figure 4.11 shows

the relation between power and lift as a function of the amplitude. The data showed that
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increasing the amplitude resulted in more power per lift, orthe power requirement rose

faster than the lift provided.
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Figure 4.11: Power per lift vs. amplitude,A(n), τ = 0, η = 0 V

4.2.2 Split-cycle Shift.

For the split-cycle shift and the stroke bias, power was evaluated as a change in power

from the case with zero split-cycle shift and stroke bias. Asstated earlier, a split-cycle shift

of ±0.3 is sufficient for control, but for the author’s edification, split-cycle was evaluated

from −π/2 to π/2. The results are shown in Figure 4.12. A clear spike in power could be

seen that correlated toπ/4. This could more accurately be seen when a cosine with split-

cycle shift of π/4 was compared to a symmetric cosine wave, shown in Figure 4.13. A

split-cycle shift ofπ/4 changes the frequency of the cosine wave causing the wing to flap

faster drawing more power.

Figure 4.14 shows change in power as a function of the split-cycle shift for a more

reasonable range. One could see that in the range ofτ = −0.3→ 0.3, the split-cycle shift

was inversely related to the change in power. In comparing the ordinate to the ordinate in
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Figure 4.12: Power vs. split-cycle shift,τ(n), A = 1, η = 0 V

Figure 4.9, it can be observed that the change in power was multiple orders of magnitude

less than the overall power. It is also important to note thatthe relation was symmetric

about zero split-cycle shift. The symmetry will be important when designing a controller.

Figure 4.15 shows forces and moments as a function of the split-cycle shift. These

tests were performed with an amplitude of one. With no split-cycle shift, the flapper

should produce a lift of approximately 58 mg, a thrust of approximately -23 mg, and a

pitch of approximately -300 mg-mm (from Figure 4.10). Thesevalues match closely with

the values in Figure 4.15. Furthermore, the lower power requirements of split-cycle shift

were manifested as a loss of lift and pitch control. It appears that split-cycle shift has little

effect on the thrust, which remains at much lower values than thelift. This did not agree

with the predictions in Table 4.1.
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Figure 4.15: Forces and moments about the balance center vs.split-cycle shift, τ(n),

A = 1, η = 0 V
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Figure 4.16: Power per lift vs. split-cycle shift,τ(n), A = 1, η = 0 V
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Figure 4.16 shows the relation between power and lift as a function of the split-cycle

shift. Note that the range of the ordinate for the change in power per lift is an order of

magnitude lower that that of Figure 4.11. The data showed that increasing the split-cycle

shift resulted in more power per lift. Since additional split-cycle shift resulted in lower

power requirements, the increasing power per lift indicates that the lift produced decreased

more rapidly than the power requirements.

4.2.3 Stroke Bias.

Stroke bias was evaluated from -1 to 1 for a single-wing flapper. These tests were

also performed with an amplitude of one. Greater values of stroke bias caused the wing

to interfere with the structure. The data showed that the power requirements of stroke bias

were not symmetric about zero, as shown in Figure 4.17. To ensure that this was not an

effect of the bimorph nature of the piezoelectric actuator, thetest was performed in reverse

order. Figure 4.17 also shows the data from that test. The data showed that the results were

not a function of the testing order but rather that the power did in fact decrease as stroke

bias increased. This is counter-intuitive and is explainedin detail later when the dual-wing

flapper results are presented. It is important to note that the change was on the order of 1%

of the total power. This information will be very useful to the control designer.

Data was also collected for the effect that stroke bias had on forces and moments.

Figure 4.18 shows that data. Recall that an amplitude of 1 would supply lift of

approximately 58 mg, thrust of approximately -23 mg, and pitch moment of approximately

3100 mg-mm (from Figure 4.10). The stroke bias had a detrimental effect on lift. The

stroke bias did not have an effect on the thrust. Stroke bias did affect the pitch moment,

reducing the pitch moment by approximately 130 mg-mm as the stroke bias was increased

or decreased to 0.75 as indicated by a best fit curve. These results agreed with the prediction

for symmetric stroke bias in Table 4.1.
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Figure 4.17: Power vs. stroke bias,η(n), A = 1, τ = 0

Figure 4.19 shows the relation between power and lift as a function of the stroke bias.

Again, note that the range of the ordinate for the change in power per lift is an order of

magnitude lower that that of Figure 4.11. The data showed that increasing the stroke bias

resulted in less power per lift, but at smaller magnitudes than amplitude and split-cycle

shift.

4.2.4 Design of Experiments.

Figure 4.20 shows the results from the DOE run accomplished using Table 3.1.

The data showed the correlation between the three BABM parameters and the four

measurements: power, lift, thrust, and pitch moment. The blue dashed lines represent

confidence intervals to one standard deviation. The importance of the parameter can be

assessed by the slope of the relation. Figure 4.20 also places all three parameters on the
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Figure 4.18: Forces and moments about the balance center vs.stroke bias,η(n), A = 1, τ =

0
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Figure 4.19: Power per lift vs. stroke bias,η(n), A = 1, τ = 0
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Figure 4.20: DOE results for single-wing flapper
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same scale. It was easy to determine that amplitude had the greatest effect on power. The

data also showed that the stroke bias had the greatest effect on thrust, unlike predicted in

Table 4.1. The data show that symmetric split-cycle shift may be most useful to control the

pitch moment.

Figures 4.21 and 4.22 show the relations for the power and lift. The bars are scaled

estimates normalized between -1 and 1 where a negative relationship is detrimental to the

output. The blue lines on the charts mark a value of 0.2 indicating a strong relationship. The

figures also show secondary interactions. The data agreed that amplitude had the strongest

effect on power. The data also agreed that amplitude had the greatest effect on lift but a

strong secondary interaction appeared between amplitude and stroke bias squared. This

indicates that changes in amplitude and large changes in stroke bias may detrimentally

affect lift in a significant way.

4.2.5 Randomized Verification.

In order to ensure that the testing methodology was sound prior to moving forward

with dual-wing flapper testing, data were collected for randomly selected values of the

BABM parameters. Figures 4.23, 4.24, and 4.25 show the results of those tests. The data

was in close correlation with the other data. These results helped verify that the data for the

single-wing flapper was collected and analyzed properly.
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Figure 4.21: BABM parameter effects on power for a single-wing flapper
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Figure 4.22: BABM parameter effects on lift for a single-wing flapper
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Figure 4.23: Power vs. amplitude,A(n), random sampling,τ = 0, η = 0 V
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Figure 4.24: Power vs. split-cycle shift,τ(n), random sampling,A = 1, η = 0 V
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Figure 4.25: Power vs. stroke bias,η(n), random sampling,A = 1, τ = 0
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4.3 Dual Wing Flapper

After completion of the single-wing flapper testing, a dual-wing flapper was

constructed to test. The dual-wing flapper allowed investigation into the side force, the

rolling moment, and the yaw moment. Testing on the dual-wingflapper was much quicker

due to the lessons learned with the single-wing flapper, mostly in regards to proper test

setup. Fifteen test matrices were run resulting in 226 test cases. Approximately 133 cases

were used for final analysis. The test setup allowed for separate power measurements on

the left and right wing so the results were split into power requirements for each wing.

Since power was calculated in Watts as described in Chapter III, the two were additive for

total power required. Table 4.1 again served as a basis for comparison to the forces and

moments generated.

4.3.1 Amplitude.

Figures 4.26 and 4.27 show the power requirements as a function of the amplitude.

Data were collected by varying amplitude from 0.5 to 2.5. Thedata showed a good trend

when compared to the single-wing flapper shown in Figure 4.9.Data agreed between the

wings, as the amplitude increased on either wing the power increased in an exponential

manner. In addition, the power required matched when both wing amplitudes were at 2.

Data were also collected for the forces and moments as a function of amplitude for

each wing. Figures 4.28 and 4.29 show these data. Knowing that theM. sextahas a mass

averaging 1.55 grams, a lift equal to that would be required to result in flight. From either

Figure 4.28 or 4.29, it could be seen that, with this flapper configuration, an amount of

lift was not achievable to overcome the mass. As such, an amplitude of 2 was selected

to serve as a baseline for later comparison. The plots in Figures 4.28 and 4.29 show,

like in the single-wing flapper case, that there was strong correlation between amplitude

and lift and between amplitude and pitch with little correlation between amplitude and
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Figure 4.26: Power vs. amplitude, left wing,AL(n), AR = 2 V, τL = 0, τR = 0, η = 0 V

thrust. Figures 4.28 and 4.29 also show little correlation between amplitude and side force,

although a side force of zero at symmetric amplitudes would have been more desirable. The

slight difference suggested some differences existed between the left flapper and the right

flapper. The roll moment did react to the asymmetric amplitude, an unpredicted result in

Table 4.1. This was not unusual though, since the amplitude of a single flapper does affect

the thrust (Figure 4.10), a roll moment would result as a difference in thrust between the

two wings. As shown in Table 4.1, the yaw moment was greatly affected by the asymmetric

change in amplitude. This data suggested that, as in fixed wing aircraft, the roll and yaw

moments were coupled.

Figures 4.30 and 4.31 show the relation between power and lift as a function of the

amplitude for the left and right wings. The data contradicted each other as to whether
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Figure 4.27: Power vs. amplitude, right wing,AR(n), AL = 2 V, τL = 0, τR = 0, η = 0 V
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Figure 4.28: Forces and moments about the balance center vs.amplitude, left wing,AL(n),

AR = 2 V, τL = 0, τR = 0, η = 0 V
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Figure 4.29: Forces and moments about the balance center vs.amplitude, right wing,AR(n),

AL = 2 V, τL = 0, τR = 0, η = 0 V
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Figure 4.30: Power per lift vs. amplitude, left wing,AL(n), AR = 2 V, τL = 0, τR = 0, η =
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Figure 4.31: Power per lift vs. amplitude, right wing,AR(n), AL = 2 V, τL = 0, τR = 0, η =

0 V
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increasing the amplitude resulted in more or less power per lift. Again, the difference

suggested some differences existed between the left flapper and the right flapperand were

magnified in the power per lift data.

4.3.2 Split-cycle Shift.

Figures 4.32 and 4.33 show the power requirements as a function of the split-cycle

shift. Data were collected by varying the split-cycle shiftfrom -0.25 to 0.25, the expected

values of usefulness. The power here is not shown as a change from the case of zero

split-cycle but rather the total power of the system. As expected, the wing with a constant

split-cycle shift of zero required constant power while thewing with varying split-cycle

shift required less power. These results agreed with the results of the single-wing flapper.
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Figure 4.32: Power vs. split-cycle shift, left wing,τL(n), AL = 2,AR = 2 V, τR = 0, η = 0 V
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Figure 4.33: Power vs. split-cycle shift, right wing,τR(n), AL = 2,AR = 2 V, τL = 0, η =

0 V

Data were also collected for the forces and moments as a function of split-cycle shift

for each wing. These data are shown in Figures 4.34 and 4.35. Similar correlations between

the lift, thrust, pitch moment and split-cycle shift occurred with the single-wing flapper and

the dual-wing flapper. Split-cycle shift had little effect on the side force. The yaw moment

was effected by the change in the split-cycle shift, as predicted inTable 4.1. As the split-

cycle shift was asymmetrically increased or decreased fromzero, the yaw increased or

decreased depending on which wing had a greater split-cycleshift. This made sense with

knowledge from Figure 4.15 on how the split-cycle shift affected the lift on one wing. As
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suggested by the dual-wing flapper amplitude tests, the yaw and roll moments were again

coupled.

Figures 4.36 and 4.37 show the relation between power and lift as a function of the

split-cycle shift for the left and right wings. The data showed that increasing or decreasing

the split-cycle shift on either wing resulted in more power per lift. The results agreed with

the results shown in Figure 4.16.
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Figure 4.34: Forces and moments about the balance center vs.split-cycle shift, left wing,

τL(n), AL = 2,AR = 2 V, τR = 0, η = 0 V
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Figure 4.35: Forces and moments about the balance center vs.split-cycle shift, right wing,

τR(n), AL = 2,AR = 2 V, τL = 0, η = 0 V

83



P
ow

er
/L

ift
(m

W
/m

g
)

Split-cycle Shift, Left Wing
−0.2 −0.1 0 0.1 0.2

×10−3

0

2

4

6

8

10

12

C
h

an
g

e
in

P
ow

er/L
ift

(m
W
/m

g
)

Split-cycle Shift, Left Wing
−0.2 −0.1 0 0.1 0.2

×10−3

0

2

4

6

8

10

12

Figure 4.36: Power per lift vs. split-cycle shift, left wing, τL(n), AL = 2,AR = 2 V, τR =

0, η = 0 V
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Figure 4.37: Power per lift vs. split-cycle shift, right wing, τR(n), AL = 2,AR = 2 V, τL =

0, η = 0 V
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4.3.3 Stroke Bias.

Figure 4.38 shows the results of data collected for symmetric change of stroke bias.

Referring to the data shown in Figure 4.17, the power requirements should have been

similar for the left and right wing, but that was not the case.In fact, the data from the left

wing showed what was to be expected, that as the stroke bias was changed, there was little

effect on the power requirements. These data suggested asymmetry in the piezoelectric

actuator. Further investigation is required to identify these differences.

 

 

Left Wing
Right Wing
Total

C
h

an
g

e
in

C
yc

le
A

ve
ra

g
e

P
ow

er
(m

W
)

Stroke Bias (V)
−0.6 −0.4 −0.2 0 0.2 0.4 0.6

×10−4

2

4

6

8

10

12

Figure 4.38: Power vs. stroke bias,η(n), AL = 2,AR = 2 V, τL = 0, τR = 0

Data were also collected for the forces and moments as a function of symmetric

stroke bias. Since these data were for symmetric stroke bias, similar trends were expected

between the singe-wing flapper case (Figure 4.18) and the dual-wing flapper case shown in

Figure 4.39. This was true for the thrust and pitch moment, albeit that the effect on pitch
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moment was magnified. But in this case, stroke bias had a smalldetrimental effect on lift

that may not have been detectable in the single-wing flapper case. Even more interesting,

was the effect stroke bias had on roll and, by coupling, yaw moment. Which of these effects

were due to stroke bias and which were a result of power difference were difficult to discern.

More testing is required, preferably once a final piezoelectric actuator has been chosen.

Figure 4.40 shows the relation between power and lift as a function of the stroke bias.

The data showed that increasing or decreasing the stroke bias resulted in more power per

lift. The results are much closer to what was expected but didnot agree with the results

presented in Figure 4.19. This further suggested that asymmetries where present between

the flappers.
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Figure 4.39: Forces and moments about the balance center vs.stroke bias,η(n), AL =

2,AR = 2 V, τL = 0, τR = 0
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Figure 4.40: Power per lift vs. stroke bias,η(n), AL = 2,AR = 2 V, τL = 0, τR = 0
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4.3.4 Design of Experiments.

Figure 4.41 shows the results from the DOE run accomplished using Table 3.2.

The data showed the correlation between all five BABM parameters and the seven

measurements. Again, the blue dashed lines represent confidence intervals to one standard

deviation. It is important to note that fewer data runs were accomplished to generate the

plots in Figure 4.41. Examining data for the amplitude from both left and right flapper and

its effect on side force produce some concerns. In fact, close analysis of all the data from

the left and right flapper indicate the conclusion made abovewhen investigating the stroke

bias on the dual-wing flapper; that there were asymmetries inthe piezoelectric actuators.

Ideally, these tests would be performed again, but piezoelectric actuators were in low supply

when these differences manifested. In any case, these relations were important, because

consistent operation in the field is difficult to ensure. An emphasis was placed on the results

for the left flapper since the left piezoelectric actuator was less used. The data indicated that

to manipulate the roll moment, an asymmetric amplitude would be most affective, contrary

to Table 4.1. The data also shows that asymmetric split-cycle shift may be as effective as

asymmetric amplitude to control yaw.

Figures 4.42 and 4.43 show the relations for power and lift associated with a dual-

wing flapper. Recall that the bars are scaled estimates normalized between -1 and 1 where

a negative relationship is detrimental to the output and that the blue lines on the charts

mark a value of 0.2 indicating a strong relationship. The data agreed that amplitude has the

greatest and only significant affect on the power. The lift data identified a strong effect from

stroke bias squared and split-cycle squared. The lift data also identified a strong benefit

from right wing amplitude and stroke bias, but the fact that it was not symmetric with left

wing amplitude and stroke bias cause further speculation ofthe stroke bias measurements.
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Figure 4.41: DOE results for dual-wing flapper
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Figure 4.42: BABM parameter effects on power for a dual-wing flapper
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Figure 4.43: BABM parameter effects on lift for a dual-wing flapper
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4.4 Comparison to Earlier Work

Little work as been done in this area for comparison. Reference 31 tested a small

range of amplitude and stroke bias and a similar range to split-cycle shift tested here. The

power results, the only ones presented in Reference 31, followed similar trends as the power

results presented here except in the case of stroke bias. Theresults presented in Reference

31 showed no correlation between stroke bias and power, similar to the left wing in the

dual-wing flapper case above. This further suggested that the power amplifier provided

asymmetric signals when supplied the same input.

Some of the results presented in Reference 6, Table 4.1 did not hold true for this flapper

configuration. It is important to note that the results foundin this work does not dispute the

work in Reference 6, this work in fact compliments it. The data gathered in Reference 6

was on a different wing configuration and flapper structure. Recall that the wing used for

this research was optimized to match the inertial moments oftheM. sexta.

4.5 Chapter Summary

A lot of data was presented in this chapter, but few conclusions were discussed.

Chapter V will discuss the impacts these results will have onthe way forward for the AFIT

FWMAV.
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V. Conclusions

Conclusions from the data presented in the previous chapters are presented here. The

data was combined with the knowledge from the research to draw conclusions that

address the research goals.

5.1 Research Goals

Recall the goals stated in Chapter I:How much power is required to vary each

parameter and maintain lift? How do those power requirements relate to controllability?

These goals were set forth to provide future researchers andcontrol designers a reference

when considering the power requirements of the FWMAV. Sinceone mission of the

FWMAV is ISR, which is inherently lengthy, then power concerns are of high importance,

especially when a FWMAV uses the same power source for flight and sensors. Therefore,

this research was performed to quantify the power requirements of BABM, the control

scheme proposed by AFIT.

5.2 Summary of Results

The data from the figures in Chapter IV are summarized in Table5.1. The only data

that was inconclusive was in regards to the stroke bias. An understanding of the dynamics at

play might indicate that the power and lift should not changeas the stroke bias is changed.

Data indicated that power was constant with varying stroke bias in the left wing during

dual-wing flapper testing, Figure 4.38, but not in the right wing. Data further indicated that

lift was constant with varying stroke bias for the single-wing flapper, Figure 4.18, but not

for the dual-wing flapper, Figure 4.39. Recall that the condition with AL = AR = 2 and

τL = τR = η = 0 was chosen as a baseline for hover. This condition providedP = 1.24 mW,

X = 297 mg,Y = 37 mg,Z = 68 mg,L = 1650 mg-mm,M = 2300 mg-mm,N = 2800 mg-
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mm. Ideally, this condition would provide lift exclusivelybut since it did not, a routine will

have to be incorporated in the future to trim the FWMAV.

Table 5.1: Effects of BABM parameters on power and lift

BABM Parameter Effect on Power Effect on Lift

Amplitude↑ ↑ ↑

Amplitude↓ ↓ ↓

Split-cycle Shift↑ ↓ ↓

Split-cycle Shift↓ ↓ ↓

Stroke Bias↑ Inconclusive Inconclusive

Stroke Bias↓ Inconclusive Inconclusive

5.2.1 Power.

From the data, some specific relations between power and the BABM parameters can

be identified. A symmetric increase of amplitude by 10% required an increase in power by

0.38 milliwatts, approximately 30%. A symmetric decrease of amplitude by 10% allowed

a decrease in power by 0.33 milliwatts, approximately 26%. An asymmetric increase

of amplitude by 10% required an increase in power by 0.20 milliwatts, approximately

16%. An asymmetric decrease of amplitude by 10% allowed a decrease in power by

0.16 milliwatts, approximately 13%. A symmetric change of split-cycle shift to±0.3 (the

maximum change) allowed a decrease in power by approximately 25%. An asymmetric

change of split-cycle shift to±0.25 allowed a decrease in power by approximately 14%.

A change of stroke bias to±0.75 (the maximum tested on the dual-wing flapper) required
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an increase in power by approximately 1%. Clearly, amplitude has the greatest effect on

power while the effect of stroke bias may be negligible.

5.2.2 Controllability.

Some of the results presented in Reference 6 did not hold truefor this flapper

configuration. Table 5.2 summarizes the effects of control on the forces and moments for

the current wing and structure of the AFIT FWMAV. In some cases, the side-force, thrust,

and moments were not zero, indicating that the FWMAV would need to be trimmed. Since

there is currently no trim routine, the forces and moments will be discussed as percentages.

Furthermore, the research demonstrated what has been know about fixed-wing aircraft for

decades, that moments are closely coupled and an active control scheme is required for

stability.

Table 5.2: Summary of forces and moments generated by changing BABM parameter

BABM

Lift, X Symmetric Amplitude (Very Strong Correlation)

Side Force,Y Asymmetric Amplitude (Very Weak Correlation)

Thrust,Z Symmetric Split-Cycle (Weak Correlation)& Symmetric

Stroke Bias (Weak Correlation)

Roll, L Asymmetric Split-Cycle (Weak Correlation)

Pitch,M Symmetric Stroke Bias (Strong Correlation)& Asymmetric

Split-Cycle (Weak Correlation)

Yaw, N Asymmetric Amplitude (Strong Correlation)& Asymmetric

Split-Cycle (Strong Correlation)
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From the data, specific relations between control and the BABM parameters can be

identified. A symmetric increase in amplitude by 10% provided an increase in lift by

approximately 22%, while requiring an increase in power by approximately 30%. An

asymmetric increase in amplitude by 10% provided more lift but the goal is to maintain lift.

The data showed that an asymmetric change of equal magnitude, i.e. increasing one wing

by 10% and decreasing the opposite wing by 10%, would maintain lift and power at the

baseline. An asymmetric change in amplitude by 10% in both wings provided an increase in

side-force by approximately 12%. An asymmetric change of split-cycle to±0.25 increased

the roll moment by approximately 14%, increased the pitch moment by approximately 29%,

and decreased the yaw moment by approximately 100%. The asymmetric split-cycle shift

also decreased the lift by approximately 25%, which would require an increase in amplitude

to maintain lift. While the asymmetric split-cycle shift requires less power, the increase in

amplitude to maintain lift would require a net increase in power by approximately 16%

over the baseline. A change of stroke bias to±0.75 provided a change in thrust by 56%.

The change in stroke bias also caused a loss of lift by approximately 27% but did not affect

the power required. The loss of lift would have to over come byan increase in amplitude.

5.3 Future Work

The author suggests that some of these tests be completed again once the piezoelectric

actuator and the passive rotation stops are finalized. In addition, an effort should be made

to mount the final flight vehicle to the balance rather than using a different structure. Since

power and control are such complex problems associated withFWMAV flight, it would be

best to finalize other aspects of design prior to designing a controller.

Research is on going to study the aerodynamic effects of flight on a FWMAV. Once

conclusions are made regarding these effects, the forces and moments can be related to

actual maneuverability of the FWMAV.
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As stated earlier, a routine to trim the FWMAV will be required prior to flight. Such

a routine should be designed using this research to simulateexpected forces and moments

given certain BABM parameters. If changes to the vehicle design are made, the model can

then be updated to reflect the most current design iteration.

Efforts should also be made to design control logic for minimum power path

optimization based on the data obtained in this research. During those efforts, careful

documentation should be taken to ease the future redesigns should the FWMAV change

significantly.
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Appendix: Explanation of MATLAB Scripts

TheMATLAB code that was used for this research is summarized here. This appendix

identifies the custom code prepared and outlines the required inputs and outputs for

each of the scripts.

I. DWF_Test_non_Bias.m

This script performed the designed set of experiments on a dual-wing flapper without

a bias drive. It would perform single test cases or multiple cases by varying the

frequency or the BABM parameters. The data was stored in a array of structures. The

script is largely based on the work of Captain Garrison Lindholm.

Inputs

maxA→Maximum voltage for PZT actuator

w→Frequency (rad/sec)

eta→Stroke bias

AR→Amplitude, right wing

tauR→Split-cycle shift, right wing

AL→Amplitude, left wing

tauL→Split-cycle shift, left wing

M1pR→Magnitude 1st harmonic, right wing

M2pR→Magnitude 2nd harmonic, right wing

beta1pR→Phase 1st harmonic, right wing

beta2pR→Phase 2nd harmonic, right wing

M1pL→Magnitude 1st harmonic, left wing
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M2pL→Magnitude 2nd harmonic, left wing

beta1pL→Phase 1st harmonic, left wing

beta2pL→Phase 2nd harmonic, left wing

samples→Number of sample runs per test point

simFlag→1 = simulation, 0= hardware test

testFlag→2 = BABM test, 1= Frequency test, 0= Single test case

Outputs

data →Data structure with inputs, outputs, units, and information pertaining

to the tests

II. DWFt.m

This script ran the tests forDWF_Test_non_Bias.m with the selected number of

sample runs. This script also performed the cycle-average analysis. The script is

largely based on the work of Captain Garrison Lindholm.

Inputs

maxA→Vector of time

w→Frequency (rad/sec)

BABMs→A structure containing BABM constants for each test case

samples→Number of samples at test case

simFlag→1 = simulation, 0= hardware test

Outputs

out→Data structure with inputs, outputs, units, and information pertaining to

the tests
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III. DWFs.m

This script ran the individual test runs forDWFt.m. The script is largely based on the

work of Captain Garrison Lindholm.

Inputs

maxA→Vector of time

w→Frequency (rad/sec)

BABMs→A structure containing BABM constants

simFlag→1 = true (simulation), 0= false (hardware test)

Outputs

P→Power in amps

V→Raw voltage

I→Raw current

forceX→Tared forces in x-direction in grams

forceZ→Tared forces in z-direction in grams

forceY→Tared forces in y-direction in grams

input→Input parameters used in this sample run

dis→Tared displacement in millimeters

S→Sampling information used in this sample run

IV. SWF_Test_non_Bias.m

This script performed the designed set of experiments on a dual-wing flapper without

a bias drive. It would perform single test cases or multiple cases by varying the

frequency or the BABM parameters. The data was stored in a array of structures. The

script is largely based on the work of Captain Garrison Lindholm.
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Inputs

maxA→Maximum voltage for PZT actuator

w→Frequency (rad/sec)

eta→Stroke bias

A→Amplitude

tau→Split-cycle shift

M1pR→Magnitude 1st harmonic

M2pR→Magnitude 2nd harmonic

beta1pR→Phase 1st harmonic

beta2pR→Phase 2nd harmonic

samples→Number of sample runs per test point

simFlag→1 = simulation, 0= hardware test

testFlag→2 = BABM test, 1= Frequency test, 0= Single test case

Outputs

data →Data structure with inputs, outputs, units, and information pertaining

to the tests

V. SWFt.m

This script ran the tests forSWF_Test_non_Bias.m with the selected number of

sample runs. This script also performed the cycle-average analysis. The script is

largely based on the work of Captain Garrison Lindholm.

Inputs

maxA→Vector of time

102



w→Frequency (rad/sec)

BABMs→A structure containing BABM constants for each test case

samples→Number of samples at test case

simFlag→1 = simulation, 0= hardware test

Outputs

out→Data structure with inputs, outputs, units, and information pertaining to

the tests

VI. SWFs.m

This script ran the individual test runs forSWFt.m. The script is largely based on the

work of Captain Garrison Lindholm.

Inputs

maxA→Vector of time

w→Frequency (rad/sec)

BABMs→A structure containing BABM constants

simFlag→1 = true (simulation), 0= false (hardware test)

Outputs

P→Power in amps

V→Raw voltage

I→Raw current

forceX→Tared forces in x-direction in grams

forceZ→Tared forces in z-direction in grams

forceY→Tared forces in y-direction in grams

103



input→Input parameters used in this sample run

dis→Tared displacement in millimeters

S→Sampling information used in this sample run

VII. BABM.m

Function was designed to take the desired signal length, drive frequency, BABM

parameters, and FRF plant information and then output the DHPC compensated

signals corresponding to the BABM parameters. Used with inDWFs.m andSWFs.m.

The script was written by Captain Garrison Lindholm.

Inputs

t→Vector of time

w→Frequency (rad/sec)

eta→Stroke bias

AR→Amplitude, right wing

AL→Amplitude, left wing

tauR→Split-cycle shift, right wing

tauL→Split-cycle shift, left wing

M1pR→Magnitude 1st harmonic, right wing

M2pR→Magnitude 2nd harmonic, right wing

beta1pR→Phase 1st harmonic, right wing

beta2pR→Phase 2nd harmonic, right wing

M1pL→Magnitude 1st harmonic, left wing

M2pL→Magnitude 2nd harmonic, left wing
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beta1pL→Phase 1st harmonic, left wing

beta2pL→Phase 2nd harmonic, left wing

Outputs

VR→Voltage signal to drive the right wing

VL→Voltage signal to drive the left wing

VIII. M_cp.m

This script was a designed to move the moments to the center ofpressure. It was a

post-processing function ran on the data file.

Inputs

file→File name of data structure

Outputs

data →Data structure with inputs, outputs, units, and information pertaining

to the tests
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